Cambridge International Examinations Cambridge International General Certificate of Secondary Education | Candidates answer on the Question Pape | 1 hour 15 minut | es | |--|---------------------|----| | Paper 5 Practical Test | May/June 20 | | | CHEMISTRY | 0620/ | 51 | | CENTRE
NUMBER | CANDIDATE
NUMBER | | | CANDIDATE
NAME | | | #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. As listed in the Confidential Instructions Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES. Answer all questions. Additional Materials: Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. Notes for use in qualitative analysis are provided on pages 7 and 8. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Examiner's Use | | | |--------------------|--|--| | Total | | | The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate. This document consists of 8 printed pages. 1 You are going to investigate the reaction between aqueous sodium thiosulfate and two different aqueous solutions of potassium iodate labelled solution **C** and solution **D**. ### Read all the instructions carefully before starting the experiments. #### Instructions You are going to carry out two experiments. ## (a) Experiment 1 - Fill the burette provided up to the 0.0 cm³ mark with the aqueous sodium thiosulfate. - Use a measuring cylinder to pour 20 cm³ of solution C into a conical flask. - Add 10 cm³ of dilute sulfuric acid into the flask and 1g of potassium iodide. Swirl the flask to mix the contents. - Add the aqueous sodium thiosulfate slowly from the burette to the flask, and swirl to mix thoroughly. - When the contents of the flask are pale yellow, add 1 cm³ of starch solution to the flask. - Continue to add aqueous sodium thiosulfate slowly to the flask until the solution just turns colourless. - Record the burette readings in the table. ## (b) Experiment 2 • Empty the conical flask and rinse it with distilled water. Repeat Experiment 1, using solution D instead of solution C. • Record the burette readings in the table and complete the table. | | Experiment 1 | Experiment 2 | |---------------------------------------|--------------|--------------| | final burette reading/cm ³ | | | | initial burette reading/cm³ | | | | difference/cm ³ | | | | I | 4 | 1 | |---|---|---| | | | | | (c) | Describe the appearance of the solution in the conical flask before adding the aqueous sodium thiosulfate. | |-----|---| | | [1] | | (d) | Before the addition of the starch solution, describe the changes to the colour of the solution in the conical flask as the aqueous sodium thiosulfate is added. | | | [1] | | e) | What colour change is observed in the conical flask when the starch solution is added? | | | from to | © UCLES 2017 0620/51/M/J/17 | (f) | (i) | Which solution of potassium iodate, solution ${\bf C}$ or solution ${\bf D}$, is the more concentrat Explain your answer. | ed? | |-----|------|--|---------| | | | | | | | (ii) | How many times more concentrated is this solution of potassium iodate? | | | | | | [1] | | (g) | | edict the volume of aqueous sodium thiosulfate which would be needed to react comple of 30 cm 3 of solution ${\bf D}$. | · | | | | | | | (h) | (i) | State two sources of error in the experiments. | | | | | 1 | | | | | 2 |
[2] | | | (ii) | Suggest two improvements to reduce the sources of error in (h)(i) . | | | | | 1 | | | | | 2 |
[2] | You are provided with two solids **E** and **F**. Carry out the following tests on each solid, recording all of your observations at each stage. | • | ests | α n | 20 | ll (| _ | |---|------|------------|----|------|---| | L | COLO | UII | 30 | IIU | _ | | (a) | Des | scribe the appearance of solid E . | | |-----|------|--|-----| | (b) | | ce a small amount of solid E in a hard glass test-tube. Heat the solid gently then strongly cord your observations. | | | | | [| [2] | | (c) | (i) | Place a small amount of solid E in a test-tube and add about 2 cm³ of dilute sulfuric acidest the gas given off. Record your observations. | d. | | | | | | | | | | [3] | | | (ii) | Now gradually add an excess of aqueous ammonia to the mixture in the test-tube. Record your observations. | | | | | | | | | | | | | (d) | | rry out a flame test on solid E . cord your observations. | | | | | [| [1] | | (e) | lder | ntify solid E . | | | | | | [2] | ## tests on solid F | (f) | f) Describe the appearance of solid F. | | | |--|--|---|--| | | | [1] | | | | | out 4 cm³ of distilled water to about half of solid F in a test-tube and shake the test-tube to e solid F . | | | Div | ide t | he solution into two equal portions in two test-tubes and carry out the following tests. | | | (g) (i) To the first portion of the solution, add an excess of aqueous sodium hydrox Record your observations. | | | | | | | [1] | | | | (ii) | To the second portion of the solution, add about 1 cm³ of dilute nitric acid and aqueous silver nitrate. Record your observations. | | | | | [1] | | | (h) | | rry out a flame test on solid F . cord your observations. | | | | | [1] | | | (i) | lde | ntify solid F . | | | | | [2] | | | | | [Total: 18] | | | 3 | A sa | ample of furniture cleaner contains aqueous sodium chloride, aqueous ammonia and sand. | | | |---|------|--|--|--| | | (a) | Give | e a test to show the presence of ammonia in the mixture. | | | | | | [1] | | | | (b) | Plar | n experiments to obtain a sample of | | | | | (i) | pure water from the mixture, | | | | | | | | | | | | | | | | | | [2] | | | | | (ii) | pure sand from the mixture. | [3] | | [Total: 6] # Notes for use in qualitative analysis Tests for anions | anion | test | test result | |---|---|--| | carbonate (CO ₃ ²⁻) | add dilute acid | effervescence, carbon dioxide produced | | chloride (C <i>l</i> ⁻) [in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | white ppt. | | bromide (Br ⁻)
[in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | cream ppt. | | iodide (I ⁻)
[in solution] | acidify with dilute nitric acid, then add aqueous silver nitrate | yellow ppt. | | nitrate (NO ₃ ⁻)
[in solution] | add aqueous sodium hydroxide, then aluminium foil; warm carefully | ammonia produced | | sulfate (SO ₄ ²⁻)
[in solution] | acidify, then add aqueous barium nitrate | white ppt. | | sulfite (SO ₃ ²⁻) | add dilute hydrochloric acid, warm gently and test for the presence of sulfur dioxide | sulfur dioxide produced will turn acidified aqueous potassium manganate(VII) from purple to colourless | # Tests for aqueous cations | cation | effect of aqueous sodium hydroxide | effect of aqueous ammonia | |--|---|---| | aluminium (Al³+) | white ppt., soluble in excess giving a colourless solution | white ppt., insoluble in excess | | ammonium (NH ₄ ⁺) | ammonia produced on warming | - | | calcium (Ca ²⁺) | white ppt., insoluble in excess | no ppt., or very slight white ppt. | | chromium(III) (Cr ³⁺) | green ppt., soluble in excess | grey-green ppt., insoluble in excess | | copper(II) (Cu ²⁺) | light blue ppt., insoluble in excess | light blue ppt., soluble in excess, giving a dark blue solution | | iron(II) (Fe ²⁺) | green ppt., insoluble in excess | green ppt., insoluble in excess | | iron(III) (Fe ³⁺) | red-brown ppt., insoluble in excess | red-brown ppt., insoluble in excess | | zinc (Zn ²⁺) | white ppt., soluble in excess, giving a colourless solution | white ppt., soluble in excess, giving a colourless solution | ## **Tests for gases** | gas | test and test results | |-----------------------------------|--| | ammonia (NH ₃) | turns damp, red litmus paper blue | | carbon dioxide (CO ₂) | turns limewater milky | | chlorine (Cl ₂) | bleaches damp litmus paper | | hydrogen (H ₂) | 'pops' with a lighted splint | | oxygen (O ₂) | relights a glowing splint | | sulfur dioxide (SO ₂) | turns acidified aqueous potassium manganate(VII) from purple to colourless | ## Flame tests for metal ions | metal ion | flame colour | |--------------------------------|--------------| | lithium (Li ⁺) | red | | sodium (Na ⁺) | yellow | | potassium (K+) | lilac | | copper(II) (Cu ²⁺) | blue-green | Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. © UCLES 2017 0620/51/M/J/17